Negative axial strain sensitivity in gold-coated eccentric fiber Bragg gratings

نویسندگان

  • Karima Chah
  • Damien Kinet
  • Christophe Caucheteur
چکیده

New dual temperature and strain sensor has been designed using eccentric second-order fiber Bragg gratings produced in standard single-mode optical fiber by point-by-point direct writing technique with tight focusing of 800 nm femtosecond laser pulses. With thin gold coating at the grating location, we experimentally show that such gratings exhibit a transmitted amplitude spectrum composed by the Bragg and cladding modes resonances that extend in a wide spectral range exceeding one octave. An overlapping of the first order and second order spectrum is then observed. High-order cladding modes belonging to the first order Bragg resonance coupling are close to the second order Bragg resonance, they show a negative axial strain sensitivity (-0.55 pm/με) compared to the Bragg resonance (1.20 pm/με) and the same temperature sensitivity (10.6 pm/°C). With this well conditioned system, temperature and strain can be determined independently with high sensitivity, in a wavelength range limited to a few nanometers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laser-frequency locking techniques for high-sensitivity strain measurements by high-birefringence fiber Bragg gratings and resonators

A new approach to simultaneously interrogate orthogonal axes of single Fiber-Bragg-Gratings (FBGs) and FBG-Fabry Perot resonator sensors fabricated in linearly highly birefringent (HiBi) fibre is presented. Novel interrogation techniques of single Fiber-Bragg-Gratings (FBGs) and FBG-resonator sensors are presented. For a single FBG, we combined a laser-modulation technique to an electronic feed...

متن کامل

Microstructured Optical Fiber Sensors Embedded in a Laminate Composite for Smart Material Applications

Fiber Bragg gratings written in highly birefringent microstructured optical fiber with a dedicated design are embedded in a composite fiber-reinforced polymer. The Bragg peak wavelength shifts are measured under controlled axial and transversal strain and during thermal cycling of the composite sample. We obtain a sensitivity to transversal strain that exceeds values reported earlier in literat...

متن کامل

Light Polarization-Assisted Sensing with Tilted Fiber Bragg Gratings

Tilted fiber Bragg gratings (TFBGs) are short-period gratings for which the refractive index modulation of the fiber core is angled by a few degrees with respect to the perpendicular to the propagation axis. They induce two kinds of light coupling: the self-backward coupling of the core mode at the Bragg wavelength and the backward coupling between the core mode and several tens of cladding mod...

متن کامل

Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings

In this work, a compact fiber-optic 3D shape sensor consisting of two serially connected 2° tilted fiber Bragg gratings (TFBGs) is proposed, where the orientations of the grating planes of the two TFBGs are orthogonal. The measurement of the reflective transmission spectrum from the pair of TFBGs was implemented by Fresnel reflection of the cleaved fiber end. The two groups of cladding mode res...

متن کامل

Sensitivity Enhancement of Strain Sensing Utilizing a Differential Pair of Fiber Bragg Gratings

In strain measurement applications, the matched fiber Bragg gratings (FBG) method is generally used to reduce temperature dependence effects. The FBG parameters have to be designed to meet the requirements by the particular application. The bandwidth and slope of the FBG has to be balanced well, according to the measurement range, accuracy and sensitivity. A sensitivity enhanced strain demodula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016